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Abstract
We study the emergence of collective dynamics in the integrable Hamiltonian
system of two finite ensembles of coupled harmonic oscillators. After
identification of a collective degree of freedom, the Hamiltonian is mapped onto
a model of Caldeira–Leggett type, where the collective coordinate is coupled to
an internal bath of phonons. In contrast to the usual Caldeira–Leggett model,
the bath in the present case is part of the system. We derive an equation of
motion for the collective coordinate which takes the form of a damped harmonic
oscillator. We show that the distribution of quantum transition strengths induced
by the collective mode is determined by its classical dynamics.

PACS numbers: 05.45.Mt, 21.60.Ev, 67.85.Jk

1. Introduction

Many-body systems show incoherent, single-particle motion, as well as coherent collective
motion. Historically this phenomenon received much attention in nuclear physics where there
is a wealth of data providing information on the coexistence of collective excitations, such
as the giant dipole resonance (GDR), and single particle excitations [1]. There is also strong
experimental [2] and theoretical [3] evidence that similar effects occur in fermionic systems
different from atomic nuclei. Other examples for collective motion are vortex-generating
rotations and oscillations in Bose–Einstein condensates [4–6]. Furthermore, the collective
behavior can also be present in confined systems such as quantum dots [7, 8].

Coherent, collective motion emerges out of incoherent, single-particle motion whenever
favored by energy conditions. Statistical analysis of spectra in nuclei indicates that chaotic
fluctuations are due to single-particle motion, while collective motion is predominantly regular,
for a review see [9] and more recent results in [10, 11]. This generic occurrence and the
coexistence of the two forms of motion pose a fundamental challenge. Strictly speaking, in
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a generic many-body system there is not an a priori separation of the collective motion from
the single-particle dynamics. Taking the three-dimensional Boltzmann gas with hard-wall
interactions as an example, one observes that the dynamics in the phase space of the system
is completely chaotic [12]. Still, we know that the system exhibits regular collective motion
in the form of sound waves. The deep and fascinating question in this context is therefore to
understand from first principles how the regular motion emerges out of the full phase space
chaos [13].

Whenever collective dynamics arises on the classical level one might expect on the basis
of quantum-classical correspondence that this phenomena should be reflected in the spectral
properties of the corresponding quantum many-body Hamiltonian. One way to probe the
existence of collective excitations is to couple the system to a weak external periodic potential
V (X) exp(iωt) depending on a collective mode X. The presence of a collective excitation can
then be usually registered as a spike at certain energies in the distribution of the transition
strengths T (En) between the ground and other states of the system. Such a large peak can be
observed, for instance, in the cross section of electric dipole radiation in atomic nuclei at high
excitation energies, when the GDR is excited. On a phenomenological level one can obtain
such a distribution of the transition strengths from a doorway-type of Hamiltonian [1, 14]:

H =
N0∑

nc=1

Enc
|nc〉〈nc| +

N∑
n,m=1

Hnm|n〉〈m| +
∑
nc,n

Vnnc
|nc〉〈n| + c.c. (1.1)

Here, the first term describes N0 collective states |nc〉 with energies Enc
, and the second term

describes the environment of single particle states |n〉 with Hnm typically modeled by a random
matrix. The last term models the interaction Vnnc

between collective and single-particle
excitations. The collective states act as doorways into the other levels of the system. A recent
discussion can be found in [15]. Although successful in the qualitative description of collective
excitation in nuclei, this model does not provide any explanation of the physical reasons that
led to the collective behavior. We note that the collective and single-particle excitations are
separated here from the start, while collectivity is in fact an emergent phenomena.

Having a classical Hamiltonian whose dynamics exhibits collective motion, what can be
stated about the distribution of the transition strengths T (En) for the corresponding quantum
problem? In particular, it makes sense to ask under what conditions it is possible to use
models like (1.1) and how the parameters there are related to the classical problem. It is also
of considerable interest to understand the role of chaos in this context [16]. Unfortunately,
at present we are lacking a genuine ‘semiclassical theory’ for the emergence of collective
excitations which would allow us to tackle the problem starting from the corresponding
classical dynamics. The main goal of the present paper is to provide answers to some of
the questions posed above in the framework of a simple integrable model of linearly coupled
harmonic oscillators. The integrability of the system simplifies the treatment immensely.
It allows for a clear identification of a collective coordinate X and an investigation of its
dynamical evolution employing an analogy with the Caldeira–Leggett model [17]. After we
fix the collective coordinate the remaining degrees of freedom are considered as a bath which is
internal, not external as in standard models of the Caldeira–Leggett-type [18–21]. As a result,
it turns out that the time evolution of X(t) is fully governed by the equation of motion for a
damped harmonic oscillator of some frequency �0 determined by the parameters of the many-
body Hamiltonian. After this we show that under certain conditions on the Hamiltonian of the
system the averaged distribution of T (En) is directly connected to the corresponding classical
problem for time evolution of X(t). In particular, the distribution of the transition strengths
T (En) exhibits spikes at energies En which are close to the energies En = E0 + nh̄�0—where
E0 is the ground-state energy—of the collective oscillations, while the width of these spikes
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is controlled by the classical decay rate γ of these oscillations. Even though the considered
model does not involve chaotic features it serves as a testing ground to address the emergence
of collective dynamics in a many-body system. Furthermore, it allows us to see the effect of
the absence of dynamical chaos on the distribution of T (En) and set up the ground for future
investigations.

The paper is organized as follows. In section 2 we introduce our model and map it to a
Caldeira–Leggett-like system. In order to illustrate the general procedure we treat the special
configuration of two simple coupled chains in section 3. In section 4 we derive the equation
of motion for the collective coordinate and obtain an expression for the spectral density
which encodes the crucial physical properties of our model. In section 5 we investigate the
distribution of transition strengths between the ground state and excited states and relate the
result with the dynamics of collective motion.

2. Coupled chains of oscillators

In section 2.1 we define the model. After defining a collective coordinate we map the system
onto a Caldeira–Leggett-like model in section 2.2.

2.1. The model

We consider two identical chains of one-dimensional coupled harmonic oscillators each
consisting of N particles with positions xj, j = 1, . . . , N, and momenta pj, j = 1, . . . , N, as
well as x̄j and p̄j , respectively. They are ordered in vectors x, x̄, p and p̄. The chains are
coupled by an interaction Hint. When the coupling is ‘switched off’, i.e. Hint = 0, these two
chains are governed by the Hamiltonians

HI = 1

2m
(p, p) + (x,Wx), HII = 1

2m
(p̄, p̄) + (x̄,W x̄), (2.1)

where the notation (·, ·) stands for the scalar product. In the coordinate representation, we
have

(p, p) =
N∑

i=1

p2
i , (p̄, p̄) =

N∑
i=1

p̄2
i , (2.2)

while the potential terms describing the interactions of different particles within the chains
can be written as

(x,Wx) =
N∑

i,j=1

xiWijxj , (x̄,W x̄) =
N∑

i,j=1

x̄iWij x̄j . (2.3)

We assume that such interactions are given by a shift invariant matrix Wij =
W(i+n)modN (j+n)modN . This implies that for uncoupled chains the non-interacting degrees of
freedom are phonons. In addition, we require the translational symmetry of the Hamiltonian.
From this we obtain

∑N
i=1 Wij = 0, which means that there is no external force acting on the

center of mass.
After introducing the coupling between the two chains the total Hamiltonian of the system

becomes

H = HI + HII + Hint, (2.4)

where the interaction term

Hint =
N∑

i,j=1

Kij (xi − x̄j )
2 =

N∑
i,j=1

Kij

(
x2

i + x̄2
j

) − 2
N∑

i,j=1

Kijxi x̄j (2.5)
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is determined by positive symmetric coupling constants Kij . In what follows, we assume
that H(x, p, x̄, p̄) is a non-negative function. This guarantees that the motion of the whole
system remains bounded for all times. We note that we do not make a similar requirement for
HI(p, q) and HII(p̄, q̄).

2.2. Mapping onto a Caldeira–Leggett-like model

In what follows, we study the dynamics of the collective coordinate X defined as the difference
between the center of masses of two chains scaled with the factor

√
N/2:

X = 1√
2N

N∑
i=1

xi − 1√
2N

N∑
i=1

x̄i . (2.6)

To this end we map the general problem (2.4) of two coupled chains of harmonic oscillators to
a model of Caldeira–Leggett type, where X is coupled to the ‘bath’ provided by the remaining
degrees of freedom. This formulation provides an intuitive description for the dynamics of
the collective coordinate in the process of transferring energy from X to the bath coordinates.
Such an interpretation, however, has to be used carefully because the energy transfer happens
inside the full system and a precise definition of the bath depends not only on the form of the
Hamiltonian (2.4) but also on the choice of the collective coordinate.

As a first step, we introduce the new set of canonical coordinates and momenta

ci =
N∑

n=1

Ainxn, χi =
N∑

n=1

Ainpn, (2.7)

c̄i =
N∑

n=1

Ainx̄n, χ̄i =
N∑

n=1

Ainp̄n, (2.8)

such that HI and HII become diagonal:

HI =
N∑

i=1

(
χ2

i

2m
+

mω2
i c

2
i

2

)
, HII =

N∑
i=1

(
χ̄2

i

2m
+

mω2
i c̄

2
i

2

)
, (2.9)

where Ain are the elements of the matrix A that diagonalizes W :

AWAT = m

2
�2, � = diag(ω1, . . . , ωN). (2.10)

For the translational invariant matrix W used in this model, the diagonalization matrix A is
given by [22]

Aj1 =
√

1

N
, Ajm =

√
2

N
cos

(
π(m − 1)

N

(
j − 1

2

))
, (2.11)

with indices m = 2, . . . , N and j = 1, . . . , N . We now express the interaction part of the two
chains in the new coordinates. For the first term in equation (2.5) we obtain

N∑
i,j=1

Kij

(
x2

i + x̄2
j

) =
N∑

n,m=1

N∑
i=1

k̂iAinAim(cncm + c̄nc̄m), (2.12)

where we introduced k̂i = ∑N
j=1 Kij . Treating the second term in equation (2.5) in an

analogous way we obtain for the interaction part of the Hamiltonian

Hint = (c, K̃αc) + (c̄, K̃α c̄) − (c, K̃β c̄) − (c, K̃β c̄), (2.13)
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where c, c̄ are vectors with components cn, c̄n and K̃α, K̃β are the matrices defined by

K̃α = AT K̂A, K̃β = AT KA, (2.14)

with K̂ij = δij k̂j . Furthermore, after transforming the coordinates and momenta according to

dn = (cn − c̄n)√
2

, d̄n = (cn + c̄n)√
2

, (2.15)

ηn = (χn − χ̄n)√
2

, η̄n = (χn + χ̄n)√
2

(2.16)

and defining K̃ = K̃α + K̃β , K̄ = K̃α − K̃β , the interaction term can be cast into the form

Hint = (d, K̃d) + (d̄, K̄d̄). (2.17)

With this new set of canonical coordinates the Hamiltonian becomes

H =
N∑

i=1

(
η2

i

2m
+

η̄2
i

2m

)
+

m

2

N∑
i=1

(
ω2

i d̄
2
i + ω2

i d
2
i

)
+

N∑
n,m=1

K̃nmdndm +
N∑

n,m=1

K̄nmd̄nd̄m

= 1

2m
(η, η) +

(
d,

m

2
�2 + K̃d

)
+

1

2m
(η̄, η̄) +

(
d̄,

m

2
�2 + K̄d̄

)
. (2.18)

We note that the collective coordinate and momentum are just

X = d1, P = η1 (2.19)

and the corresponding frequency is ω1 = 0. Since X couples only to the coordinates dn, the
part of H which depends on d̄, η̄ can be disregarded when the dynamics of the collective mode
is considered. Consequently, the relevant part of the Hamiltonian is given by

H ′ = P 2

2m
+ K̃11X

2 + X

N∑
n=2

K̃n1dn +
N∑

n=2

η2
n

2m
+

N∑
m,n=2

(
K̃nm +

mω2
nδnm

2

)
dndm. (2.20)

This already strongly resembles the Caldeira–Legget model but with the non-diagonal bath
Hamiltonian

Hbath =
N−1∑
n=1

η2
n+1

2m
+

N−1∑
n,m=1

Bnmdn+1dm+1, (2.21)

where the elements of the (N − 1) × (N − 1) matrix B are given by

B(n−1)(m−1) = K̃nm +
mω2

nδnm

2
, n,m = 2, . . . , N. (2.22)

To cast the bath Hamiltonian into the diagonal form, we introduce yet another set of the
coordinates ξi = ∑N−1

j=1 Ujidj+1, νi = ∑N−1
j=1 Ujiηj+1, where U is the orthogonal matrix

diagonalizing B:

UT BU = m

2
�̃2, �̃ = diag(ω̃1, . . . , ω̃N−1). (2.23)

With this choice of coordinates, Hbath reads

Hbath =
N−1∑
n=1

(
ν2

n

2m
+

m

2
ω̃2

nξ
2
n

)
. (2.24)

5



J. Phys. A: Math. Theor. 43 (2010) 265101 J Hämmerling et al

Now we have to perform the transformation in the part of the Hamiltonian that represents the
interaction between the bath coordinates and the collective degree of freedom,

X

N−1∑
n=1

kndn+1 = X

N−1∑
n,m=1

Unmknξm = X(l, ξ), (2.25)

where we defined the vectors k and l = UT k with the components

lm =
N−1∑
n=1

UT
mnkn, kn = K̃1(n+1), n = 1, . . . , N − 1. (2.26)

Putting all the expressions together we finally arrive at the following Caldeira–Legget form
for our model

H ′ = P 2

2m
+ K̃11X

2 + X

N−1∑
m=1

lmξm +
N−1∑
n=1

(
ν2

n

2m
+

1

2
mω̃2

nξ
2
n

)
. (2.27)

This Hamiltonian describes an effective particle moving in a harmonic potential and also
interacting with a heat bath. We emphasize again that contrary to the Caldeira–Legget model,
the bath is part of the system and not an external configuration of particles. The damping of
the collective motion is a result of a redistribution of energy and not an actual loss of energy
as in models with an external bath. Furthermore, our model possesses only a finite number of
degrees of freedom which eventually causes a return of energy into the collective mode. This
recurrence time will be much longer, however, than the spreading time for sufficiently large
number of particles.

3. Chain of oscillators with next-neighbor coupling as an example

Below we illustrate the above mapping procedure for a simple example, where the resulting
Hamiltonian (2.27) can be written down explicitly. We consider a system of two chains with
the next-neighbor interaction coupled at one point. The Hamiltonian for that system reads

H =
N∑

j=1

1

2m

(
p2

j + p̄2
j

)
+

α

2
(x1 − x̄1)

2 +
mω2

0

2

N∑
j=1

((xj − x(j+1)modN)2 + (x̄j − x̄(j+1)modN)2),

(3.1)

where Kij = (α/2)δi1δj1 are the coupling constants. The eigenfrequencies for a free chain of
N oscillators with the next-neighbor interaction as in (3.1) are given by [22]

ωk = 2ω0

∣∣∣∣sin
π(k − 1)

2N

∣∣∣∣ , k = 1, . . . , N, (3.2)

with the corresponding eigenvectors given by (2.11). As described in section 2.2 we define
the set of new coordinates di and consider the part of the Hamiltonian H ′ which only contains
the couplings between the dj’s and X = d1. Straightforward calculations then yield

H ′ = P 2

2m
+

α

N
X2 +

α√
N

X(a, d) + Hbath, (3.3)

where a = (A12, . . . , A1N) and the bath Hamiltonian is given by

Hbath = 1

2m
(η, η) +

(
d,

(m

2
�2 + αa ⊗ a

)
d
)

(3.4)

6
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with �2 being the diagonal matrix of the eigenvalues ω2
k and ‘⊗’ being the ordinary tensor

product. Diagonalization of the bath leads to

H ′ = P 2

2m
+

2α

N
X2 + X

N∑
n=2

Cn(α)ξn +
N∑

n=2

(
ν2

n

2m
+

mω̃2
nξ

2
n

2

)
(3.5)

with the coupling coefficients

Cn(α) =
√

2α

N

(
N∑

k=2

cos2
(

π(k−1)

2N

)
(
ω̃2

n − ω2
k

)2

)−1/2 N∑
k=2

cos2
(

π(k−1)

2N

)
ω̃2

n − ω2
k

, (3.6)

where the implicit equation

4α

Nm

N∑
k=2

cos2
(

π(k−1)

2N

)
ω̃2

j − ω2
k

= 1 (3.7)

yields the eigenfrequencies ω̃j .

4. Dynamics of the collective coordinate

We return to the general case. So far we mapped the Hamiltonian system of two coupled
chains of harmonic oscillators to the Caldeira–Leggett model. The next step is to consider
the time evolution of the collective mode X(t) induced by the Hamiltonian (2.27). The full
quantum mechanical solution of the problem would require calculating the time evolution for a
reduced density-matrix ρ̂rd(X) of the collective coordinate. While such an analysis is certainly
possible along the lines of [17, 23], for our purposes it will be sufficient to consider the most
basic collective dynamical properties captured by the time evolution of the expectation value
for the quantized collective observable X̂:

〈X̂(t)〉 := Tr(ρ̂X̂(t)), (4.1)

where ρ̂ is the full density matrix. In this case, the problem simplifies, since one can deduce the
time evolution equation for 〈X̂(t)〉 from the corresponding equation for the time evolution of
the quantum operator X̂(t) [24]. It is worth mentioning that, since Ĥ ′ contains only quadratic
terms, the resulting equation of motion for 〈X̂(t)〉 coincides with the corresponding equation
of motions for the classical observable X(t) obtained for the classical Hamiltonian H ′. Below
we give a short derivation of this equation and analyze its solution for certain types of initial
conditions for ρ̂.

The Heisenberg equations for our system read

˙̂X(t) = i

h̄
[Ĥ ′, X̂(t)] = P̂

m
, (4.2)

˙̂P(t) = i

h̄
[Ĥ ′, P̂ (t)] = −2K̃11X̂ +

N−1∑
n=1

lnξ̂n(t), (4.3)

˙̂ξn(t) = i

h̄
[Ĥ ′, ξ̂n(t)] = ν̂n

m
, (4.4)

˙̂νn(t) = i

h̄
[Ĥ ′, ξ̂n(t)] = −mω̃2

nξ̂n(t) + lnX̂(t). (4.5)

From these equations one immediately obtains

m ¨̂X(t) + 2K̃11X̂ −
N−1∑
n=1

lnξ̂n(t) = 0 (4.6)

7
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and

m ¨̂ξn(t) + mω̃2
nξ̂n(t) − lnX̂(t) = 0, n = 1, . . . , N − 1. (4.7)

We now use the representation of the momentum and coordinate operators at time zero in
terms of creation and annihilation operators:

ξ̂n(0) =
√

h̄

2mω̃n

(
bn + b†

n

)
, ν̂n(0) = −i

√
mh̄ω̃n

2

(
bn − b†

n

)
. (4.8)

With these initial conditions, the solution of equation (4.7) takes the form

ξ̂n(t) =
√

h̄

2mω̃n

(
e−iω̃nt bn + eiω̃nt b†

n

)
+

ln

mω̃n

∫ t

0
ds sin(ω̃n(t − s))X̂(s). (4.9)

Using this to eliminate the bath modes from equation (4.8), we obtain

¨̂X(t) +
2K̃11

m
X̂ − 2

m

∫ t

0

∫ ∞

0
ds dω̃σ (ω̃) sin(ω̃(t − s))X̂(s) = F̂ (t)

m
, (4.10)

where

F̂ (t) =
N−1∑
n=1

ln

√
h̄

2mω̃n

(
e−iω̃nt bn + eiω̃nt b†

n

)
(4.11)

is the force operator that acts on the collective coordinate and

σ(ω̃) =
N−1∑
n=1

l2
n

2mω̃n

δ(ω̃ − ω̃n) (4.12)

is the spectral density. We further rewrite the part describing the dissipation as

− 2

m

∫ t

0

∫ ∞

0
ds dω̃σ (ω̃) sin(ω̃(t − s))X̂(s) =

∫ t

0

d

dt
γ (t − s)X̂(s) ds, (4.13)

where we defined the damping kernel as

γ (t − s) = 2

m

∫ ∞

0
dω̃

σ (ω̃)

ω̃
cos(ω̃(t − s)). (4.14)

After inserting this term into equation (4.10) we arrive at

d2X̂(t)

dt2
+

2K̃11

m
X̂(t) +

∫ t

0
ds γ̇ (t − s)X̂(s) = 1

m
F̂ (t). (4.15)

We now use equation (4.15) to obtain the evolution equation for the expectation value (4.1) of
X for some class of initial states ρ̂. We assume that the initial conditions for ρ̂ satisfies

〈X̂(0)〉 = 0, 〈P̂ (0)〉 = P0, 〈bn〉 = 〈
b†

n

〉 = 0. (4.16)

Here we have used the notation 〈Â〉 := Tr(ρ̂Â) for the expectation value of an observable Â.
Under these assumptions, equation (4.15) yields for the expectation value of X̂

d2〈X̂(t)〉
dt2

+ �2
0〈X̂(t)〉 +

∫ t

0
ds γ (t − s)

d〈X̂(s)〉
ds

= 0, (4.17)

where �2
0 = 2K̃11/m − γ (0) and the term γ (0) is a renormalization of the potential

resulting from the interaction between the collective mode and the bath. Equation (4.17)
is a classical damping equation which together with the initial conditions (4.16) describes the
time development of the collective mode. It is straightforward to see that one obtains precisely

8
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the same equation for the classical time evolution of X under the classical Hamiltonian flow
induced by H ′ if the initial conditions are fixed as

X(0) = 0, P (0) = P0, ξi = 0, νi = 0, i = 1, . . . , N − 1. (4.18)

We note that the entire information on the time evolution of 〈X̂(t)〉 is encoded in the damping
kernel γ . If γ (t) = γ0δ(t), that is, if the system has no ‘memory’, the above equation describes
the damped harmonic oscillator of frequency �0 with the damping coefficient γ0.

Since (4.17) is a linear equation, we can easily construct its solution for a general kernel
γ (t). To this end we consider a slightly different equation

d2〈X̂(t)〉
dt2

+ �2
0〈X̂(t)〉 +

∫ ∞

−∞
ds θ(t − s)γ (t − s)

d〈X̂(s)〉
ds

= P0

m
δ(t), (4.19)

with the initial conditions

〈X̂(−∞)〉 = 0, 〈P̂ (−∞)〉 = 0, (4.20)

at time t = −∞. Equation (4.19) describes thus the system which stays at rest for all times
t < 0 and then gets a ‘kick’ at the time t = 0. After this it acquires a momentum P0 and
continues to evolve according to equation (4.17). Obviously both equations (4.17) and (4.19)
give the same solution for positive times. We can solve equation (4.19) employing the pair of
Fourier transforms

〈X̂(t)〉 =
∫ ∞

−∞
X̃(ω) e−iωt dω, X̃(ω) = 1

2π

∫ ∞

−∞
〈X̂(t)〉 eiωt dt. (4.21)

Applying the Fourier transformation to both sides of equation (4.19), we find the following
expression:

X̃(ω) = P0

2πm
(
�2

0 − ω2 − iωγ̃ (ω)
) , (4.22)

where γ̃ (ω) is defined as

γ̃ (ω) :=
∫ ∞

0
γ (s) eiωs ds. (4.23)

Therefore, the solution of the homogeneous system becomes

〈X̂(t)〉 = P0

2πm

∫ ∞

−∞

eiωt

�2
0 − ω2 − iωγ̃ (ω)

dω. (4.24)

As one can see from equations (4.23) and (4.24), the dynamics of the collective mode is
encoded in the spectral density σ(ω). It is thus important to relate σ(ω) to the interaction
matrix K̃ appearing in the original Hamiltonian (2.20). Recalling the definition (4.12) of σ

and using k = U l, we obtain

σ(ω) = − 1

2πmω
Im

(
N−1∑
n=1

lnl
∗
n

ω − ω̃n + iε

)

= − 1

2πmω
Im

(
N−1∑
n=1

[l ⊗ lT ]n,n

ω − ω̃n + iε

)

= − 1

2πmω
Im Tr

[
k ⊗ kT

ω11 − (
2
m

B
)1/2

+ iε

]
, (4.25)

9
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where l ⊗ lT , k ⊗ kT stands for the tensor product between l and lT (resp. k and kT ). The last
expression can be rewritten in terms of a scalar product

σ(ω) = − 1

2πmω
Im

(
k,

1

ω11 − (
�2

r + 2
m

K̃r

)1/2
+ iε

k

)
, (4.26)

where �r , K̃r are (N −1)× (N −1) matrices obtained from �, K̃ by deleting the first row and
the first column, respectively. We have now a formal expression for the spectral density of our
general model. Two remarks are in order. First the collective coordinate becomes completely
decoupled from the bath if and only if k = 0. Since the components of k can be written as

ki = 2√
N

N∑
j=1

k̂jAj(i+1), (4.27)

the above condition is equivalent to the requirement that the k̂i = ∑N
j=1 Kij take the same

value for all i. In particular, there is no damping if Kij = const. We note that given a
splitting of the interactions: Kij = K + δKij into ‘constant’ and ‘fluctuating’ parts of the
interaction, only δKij contributes to k. Second, by adding the term K0X

2 to the Hamiltonian
(2.4) one can adjust the collective frequency �̃0 without changing the spectral density σ . This
additional term can be incorporated into HI ,HII , Hint such that the overall structural form of
H remains intact. Note that this ‘renormalization’ results in a shift of the spectrum �r of the
chain Hamiltonians HI ,HII which is compensated by the shift of the interaction term K̃r by
a diagonal matrix, such that the matrix B (resp. σ ) does not change.

The form (4.26) for the density σ hinders an exact treatment for a general form of
interaction matrix K. However, if we assume that the fluctuation parts of coupling matrix
elements are small |δKij | 	 m

∣∣ω2
n+1 − ω2

n

∣∣, we can approximate the density function by

σ(ω) =
N−1∑
n=1

k2
n

2mω
δ
(
ω −

√
ω2

n + 2NK/m
)
, (4.28)

where {ωn} is the phononic spectrum of the non-interacting chains and the kn’s are determined
solely by δKij . Expression (4.28) can be interpreted to the extent that after introducing
the interaction between the two chains the phonons acquire a ‘mass’. Assuming that kn are
uniformly distributed, the behavior of σ(ω) is determined by the spectral density of the phonon
frequencies ωn. In particular, in the case of an Ohmic law distribution for the ωn, this leads
to σ(ω) ∼ ω�

(
ω − 2N

m
K

)
at low frequencies. Furthermore, if K = 0 this in turn implies that

γ (t) is localized at t = 0 and equation (4.17) can be approximated by the differential equation
describing time evolution of a harmonic oscillator with a friction.

5. Transition strengths and collective excitation

In the previous section, we derived an equation of motion that describes the damping of
the collective excitation. As we already mentioned, the quantum evolution governed by
equation (4.17) coincides with the classical evolution of X(t) if the initial conditions are
defined in an appropriate way. In this section we consider the problem of existence of quantum
collective states in the spectrum of the system. One way to probe such collective excitations is
to couple the system to an external weak periodic potential v(X, t) ∼ A(X) cos(ωt) depending
on the collective variable X. Assuming that the coupling is weak, the energy absorption rate
in the first-order perturbation theory will be determined by the following spectral function:

S̃A(ω) =
N∑

n=1

|〈0|A(X̂)|n〉|2 δ

(
ω − En − E0

h̄

)
, (5.1)

10
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with Tn = |〈0|A(X̂)|n〉|2 being the transition strengths between the ground state with energy
E0 and the nth state with energy En. The collective states can then be defined as states having
large transition strengths Tn. Accordingly, the spectral function (5.1) keeps the information
about the existence of collective modes in the system. Equivalently, one can consider the
Fourier transform of S̃A(ω), which is given by the time correlation of A(X̂):

SA(t) = 〈0|A(X̂(t))A(X̂(0))|0〉. (5.2)

On an intuitive level, one might expect that the averaged transition strengths Tn should exhibit
spikes for the energies En corresponding to collective motion. Below we show that under
certain conditions this is indeed the case and the dynamical equation (4.17), in fact, determines
the form of the time correlations SA(t).

5.1. Transition strengths induced by X̂

Let us first consider the case of the observable A(X) = X. We calculate the time correlator

S(t) = 〈0|X̂(t)X̂(0)|0〉. (5.3)

Since we are dealing here with a system of coupled harmonic oscillators it is useful to consider
the set of normal coordinates (qn, pn) where the Hamiltonian (2.18) becomes diagonal [25]:

Ĥ =
2N∑
i=1

(
p̂2

i

2m
+

mω̄2
i q̂

2
i

2

)
=

2N∑
i=1

h̄ω̄i

(
â
†
i âi +

1

2

)
. (5.4)

Here q̂i , p̂i are the position and the momentum operators corresponding to (qi, pi), with â
†
i ,

âi being the creation and the annihilation operators, respectively. The frequencies ω̄i are the
eigenfrequencies of the full system. Since the connection between old coordinates X, {di},
{d̄i} and new {qi} coordinates is given by a linear transformation, we can assume that

X̂ =
2N∑
i=1

c̃i q̂i (5.5)

with some coefficients c̃i . Substituting (5.5) into (5.3), we obtain

S(t) = 〈0|X̂(t)X̂(0)|0〉
= 〈0| exp(iĤ t/h̄)X̂(0) exp(−iĤ t/h̄)X̂(0)|0〉

=
2N∑
n=1

|〈0|X̂(0)|n〉|2 exp

(
i
(E0 − En)t

h̄

)

= h̄

2m

2N∑
n=1

c̃2
n

ω̄n

exp(−iω̄nt), (5.6)

where we used the relations q̂i = √
h̄/2mω̄i

(
â
†
i +âi

)
to calculate the transition strength between

the ground state |0102 . . . 02N 〉 = |0〉 and excited states |n1n2 . . . n2N 〉 = |n〉. Taking then the
Fourier transform of S(t) leads to

S̃(ω) =
2N∑
n=1

|〈0|X̂(0)|n〉|2δ(ω − ω̄n) = h̄

2m

2N∑
n=1

c̃2
n

ω̄n

δ(ω − ω̄n). (5.7)

Although S̃(ω) is a quantum mechanical object, we will show now that it is possible to relate
it to the dynamics of a purely classical damped harmonic oscillator. To this end we consider

11
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the time evolution of the collective coordinate X under the Hamiltonian H with the following
initial conditions:

Ẋ(0) = P0

m
, X(0) = 0, di = 0, ḋi(0) = 0, ∀ i > 1. (5.8)

As has been explained in the previous section, the dynamical evolution of X(t) with such
boundary conditions is governed by equation (4.17) for the classical damped oscillator. On
the other hand, we can express this solution in the diagonalizing coordinates q as follows. The
time evolution of qn(t) is given by

qn = An sin(ω̄nt), (5.9)

where the constants An are fixed by the initial conditions (5.8):

q̇n(0) = Anω̄n = P0

m
c̃∗
n. (5.10)

Accordingly, for the time evolution of X(t), we obtain

X(t) =
2N∑
n=1

c̃nqn(t) = P0

m

2N∑
n=1

|c̃n|2
ω̄n

sin(ωnt). (5.11)

Comparing equations (5.11) and (5.7), we see that the classical quantity X(t) and the imaginary
part of S(t) are related via

S1(t) := Im S(t) = − h̄

2m

2N∑
n=1

|c̃n|2
ω̄n

sin(ω̄nt) = − h̄

2P0
X(t). (5.12)

Taking the Fourier transform of S1(t) yields

S̃1(ω) = ih̄

2m

2N∑
n=1

|c̃n|2
2ω̄n

(δ(ω − ω̄n) − δ(ω + ω̄n)) = − ih̄

P0
Im X̃(ω), (5.13)

where X̃(ω) is given by the right-hand side of equation (4.22). Furthermore, comparing this
expression with (5.7) we recognize the connection

S̃(ω) = 2iθ(ω)S̃1(ω) = 2h̄

P0
θ(ω)Im X̃(ω), (5.14)

where θ(ω) denotes the Heaviside step function. This can also be written explicitly as

S̃(ω) = h̄

2πm
θ(ω)Im

(
1

�2
0 − ω2 − iωγ̃ (ω)

)
. (5.15)

It is worth noting that this expression for S̃(ω) can also be derived using the fluctuation–
dissipation theorem. Suppose at a certain moment a weak time-dependent perturbation
δĤ = X̂Fext(t) is added to the Hamiltonian (2.4). Under this external perturbation the
system will be driven away from the ground state. Considering the linear response of the
system to δĤ , it follows (see, e.g., [24]) that the averaged displacement of the collective
coordinate is given by

〈X̂(t)〉 =
∫ ∞

−∞
dt ′χ(t − t ′)Fext(t

′), (5.16)

where the integration kernel is given by h̄χ(t) = −2θ(t)Im 〈0|X̂(t)X̂(0)|0〉 = −2θ(t)S1(t).
On the other hand, from the previous section, we know that for any force Fext(t) (not necessary
weak) the evolution of 〈X̂(t)〉 is described by the equation

d2〈X̂(t)〉
dt2

+ �2
0〈X̂(t)〉 +

∫ t

0
ds γ (t − s)

d〈X̂(s)〉
ds

= Fext(t)

m
. (5.17)

12
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Taking the Fourier transform from both sides of this expression and comparing the result with
the Fourier transformed equation (5.16) then leads to (5.15).

From equation (5.15) we clearly see that the information on the distribution of the
transition strengths is stored in the damping kernel γ (t) of the purely classical equation
for the time evolution of the collective mode. One should note, however, that S̃(ω) is not a
smooth function but a sum of distributions with wildly fluctuating strength. It is easy to see,
for instance, that most of the states are actually not coupled at all to the ground state through
the operator X̂. Thus, in order to see a structural emergence of collective excitations, we need
to consider a smoothened version of the spectral function S̃(ω) where the average is taken over
some interval [ω − �ω/2, ω + �ω/2], such that �ω � δω̄, with δω̄ := |ω̄n+1 − ω̄n| being
the difference between two adjacent frequencies. We can define such a smoothened spectral
function as the convolution

S̃
(ε)
1 (ω) := 1

π

∫ ∞

−∞
dω̃

εS̃1(ω̃)

(ω − ω̃)2 + ε2
, (5.18)

where the parameter ε satisfies �0 � ε � δω̄. Using then the dynamical equation (4.17),
one obtains

S̃(ε)(ω) = h̄

mπ
θ(ω)Im

(
1

�2
0 − (ω − iε)2 − i(ω − iε)γ̃ε(ω)

)
, (5.19)

where γ̃ε(ω) is the smoothened damping kernel

γ̃ε(ω) =
∫ ∞

0
exp((iω − ε)t)γ (t) dt. (5.20)

In the case when the spectral density σ obeys the Ohmic law, γ̃ε(ω) = γ0 is constant and we
find for the averaged S̃(ω) the expression

S̃(ε)(ω) ≈ h̄

mπ
θ(ω)

(
ωγ0(

�2
0 − ω2

)2
+ (ωγ0)2

)
. (5.21)

Here we choose the parameter ε to be small compared to γ0. In the case of an underdamped
oscillator �0 > γ0/2, the above expression can be conveniently represented through the
parameters of the corresponding classical evolution of the collective coordinate described by
equation (4.17). Hence we have

X(t) = P

m�̄0
exp(−γ̄0t) sin(�̄0t), �̄0 =

√
�2

0 − γ 2
0

4
, γ̄0 = γ0/2. (5.22)

With the parameters �̄0, γ̄0, equation (5.21) takes the form

S̃(ω) = θ(ω)
h̄γ̄0

2πm�̄0

(
1

(ω − �̄0)2 + γ̄ 2
0

− 1

(ω + �̄0)2 + γ̄ 2
0

)
, (5.23)

where we dropped the index ε. In a strongly underdamped regime �0 � γ0/2 the transition
strength distribution (5.23) has a maximum at the frequency ω ≈ �0 ≈ �̄0 of the collective
motion, and the width of the distribution is controlled by γ0, see figure 1. On the other hand, in
the overdamped regime �0 < γ0/2 the maximum is shifted away from �0 and the distribution
becomes very broad, i.e. there are no pronounced collective excitations.

5.2. Transition strengths for general couplings

We note that the function S̃(ω), derived in the previous section, has only one maximum at a
frequency near �0. Translating this into the energy domain, one concludes that the collective

13
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Figure 1. The dimensionless functions (πm�̄2
0/h̄)S̃(ω), (πm�̄

3/2
0 /h̄

√
2)2S̃(2)(ω) are plotted on

the left-hand side (red) and the right-hand side (blue) for the parameters �̄0 = 1, γ̄0 = 0.1. The
spikes at the bottom of the figure schematically depict the states which are coupled to the ground
state through the operator X̂ and X̂2, respectively.

excitations show up only for the first energy level E1 = E0 + �0h̄ of the damped harmonic
oscillator, rather than for all energies En = E0 + n�0h̄. This is directly connected with the
choice of the coupling A(X) and the linear nature of our model, since in a harmonic oscillator
the transitions induced by X̂ only happen between neighboring states. Let us show that for a
more general choice of the coupling A(X) other collective excitations show up at energies En,
n > 1, of the collective oscillator mode. For the sake of simplicity of exposition, we will first
consider the case A(X) = X2 and then comment on the general case. We thus consider the
time correlator

S(2)(t) := 〈0|X̂2(t)X̂2(0)|0〉 − 〈0|X̂2(0)|0〉2, (5.24)

whose Fourier transform keeps information about the transition strengths induced by the
operator X̂2:

S̃(2)(ω) := 1

2π

∫ ∞

−∞
dt eiωtS(2)(t)

=
2N∑

m�=0

|〈0|X̂2|m〉|2δ
(

ω − Em − E0

h̄

)
. (5.25)

It is easy to show that this quantity can be expressed in terms of S̃(ω). Indeed, separating the
collective mode into annihilation and creation parts,

X̂(t) = X̂+(t) + X̂−(t), X̂+(t)|0〉 = 0, 〈0|X̂−(t) = 0, (5.26)

and using their commutation relation leads to

S(2)(t) = 〈0|X̂2(t)X̂2(0)|0〉 − 〈0|X̂2(0)|0〉2 = 2S2(t). (5.27)

This immediately implies

S̃(2)(ω) = 1

π

∫ ∞

−∞
dt exp(iωt)S2(t) = 2

∫ ∞

−∞
S̃(ω′)S̃(ω − ω′) dω′. (5.28)

Using then equation (5.14), we obtain

S̃(2)(ω) = −8
∫ ω

0
S̃1(ω

′)S̃1(ω − ω′) dω′. (5.29)
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If σ obeys an Ohmic law and if we are in the underdamped regime, the last expression takes
the form

S̃(2)(ω) = 2

(
h̄γ̄

2πm�̄0

)2 ∫ ω

0

(
1

(ω′ + �̄0)2 + γ̄ 2
0

− 1

(ω′ − �̄0)2 + γ̄ 2
0

)

×
(

1

(ω − ω′ + �̄0)2 + γ̄ 2
0

− 1

(ω − ω′ − �̄0)2 + γ̄ 2
0

)
dω′. (5.30)

The function S̃(2)(ω) is depicted in figure 1. For �0 � 2γ0 (i.e. strongly underdamped regime)
one can clearly see a spike in the vicinity of the oscillator frequency 2�0 with the width of the
spike being twice the width of S̃(ω) for the same parameters γ0, �0.

It is straightforward to generalize the above discussion to generic observables of the form
A(X̂) using the Taylor expansion

A(X̂) =
∞∑

n=0

αnX̂
n. (5.31)

After substituting this into the definition of the time correlator, and applying Wick’s theorem
to the products of X(t), we obtain

SA(t) = 〈0|A(X̂(t))A(X̂)|0〉 =
∞∑

n=0

βnS
n(t), (5.32)

where βn are some coefficients having the dimension of inverse length in power 2n. Taking
now the Fourier transform from both sides of this expression we obtain for the spectral function

S̃A(ω) = 1

2π

∫ ∞

−∞
dt eitωSA(t) =

∞∑
n=0

βn S̃(ω) ∗ S̃(ω) ∗ . . . ∗ S̃(ω)︸ ︷︷ ︸
n times

, (5.33)

where the symbol ∗ stands for the convolution. It is quickly seen that, in the underdamped
regime, the nth term of the sum (5.33) has a maximum at the vicinity of n�0 with a width
given by nγ .

5.3. Generic collective coordinate

It is worth noting that in our model any linear combination of xi, x̄i , that is,

Y =
N∑

i=1

(Cixi + C̄i x̄i ), (5.34)

can in principle be used as a collective coordinate in the same way as X. Specifically, for any
such choice of Y we can map the model to the Caldeira–Leggett form by applying the arguments
of section 2. Furthermore, the connection between the dynamics of Y and the corresponding
transition strength is given again by (5.15), (5.33), where the collective frequency �0 and the
damping kernel γ̃ (ω) are determined by the choice of the constants Ci, C̄i . Clearly, not every
choice of Y would be appropriate for the definition of the collective coordinate. If, for instance,
the resulting dynamics of Y (t) becomes overdamped, no visible spike can be observed in the
corresponding transition strength. On the other hand, it seems that there is no ‘unique’ choice
for the collective coordinate based on the requirement of ‘minimal friction’. Since our system
is integrable, we can take Y to be one of the normal coordinates completely decoupled from
the rest 2N − 1 degrees of freedom. This would lead to a ‘collective’ motion without friction
at all. Let us emphasize that such a pathological choice of the collective coordinate would be
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impossible for non-integrable systems. It would be of interest to investigate whether for non-
integrable systems a dynamical criterion for the collective coordinate based on the ‘minimal
friction’ principle is possible.

We now consider a more general (nonlinear) choice of a collective coordinate Ỹ ({xi, x̄i}).
To the leading order in h̄, the correlator

〈0|Ỹ (t)Ỹ (0)|0〉 = 〈0|Y (t)Y (0)|0〉 + O(h̄2) (5.35)

is determined by the linearization

Y ({xi, x̄i}) =
N∑

i=1

(
xi

∂Ỹ

∂xi

∣∣∣∣{xi=x̄i=0} + x̄i

∂Ỹ

∂x̄i

∣∣∣∣
{xi=x̄i=0}

)
(5.36)

of Ỹ , where we assumed that Ỹ ({xi, x̄i})|{xi=x̄i=0} = 0. Using then the previous line of arguing,
the leading order of the transition strengths for Ỹ can be connected with the classical dynamics
of the linearization of Y (t).

Finally, we note that in a typical physical situation, the choice of a collective coordinate is
crucially dictated by the method of probing the system. In the case of two oppositely charged
particle clouds subjected to an electromagnetic external potential, the transitions from the
ground state to a higher energy state are induced by the dipole moment operator. From this
perspective the choice of the collective coordinate as the difference of the center masses of
two ‘clouds’ seems to be the natural one.

6. Conclusions

We studied the collective behavior in an integrable model consisting of two coupled chains
of harmonic oscillators. We chose the rescaled difference of the center of mass modes of the
chains as a collective coordinate X and mapped our system onto a model of Caldeira–Leggett
type. The resemblance with the well-known Caldeira–Leggett model provides an intuitive
physical picture of the energy exchange between the collective coordinate and the remaining
degrees of freedom playing the role of the internal bath. As a result, the dynamics of the
collective mode is described by the damped harmonic oscillator equation. We then relate
this dynamical equation to the problem of the existence of collective quantum excitations
in the spectrum of the corresponding quantum Hamiltonian. These collective excitations
are probed through the transition strengths induced by observables A(X̂), depending on the
collective coordinate. As we show, for the dynamically underdamped regime, the spikes in
the distribution of the transition strengths appear precisely at the energies En = E0 + nh̄�0

(E0 = ground-state energy) of the quantized collective harmonic oscillator, while the width of
the spikes is controlled by the damping coefficient γ0 of the corresponding dynamical problem.
It is worth mentioning that based on fluctuation–dissipation type of arguments we can extend
the present approach to any Hamiltonian system with quadratic interactions.

One of the important features of our model is the freedom of choice for the collective
coordinate. Note that our definition of X in a technical sense was somewhat arbitrary. In
principle, we could take any linear combination Y as a collective coordinate, and implement
the same type of mapping procedure (as in the case of X) onto the model of Caldeira–
Leggett type. We would get then precisely the same equation of motion for Y (t), but
with a different collective frequency �0 and damping kernel γ (t). Not every choice for
Y would be, of course, appropriate in order to regard it as a collective coordinate. If, for
instance, the resulting dynamics becomes overdamped, no clear spikes will be visible at the
corresponding spectral function. On the other hand, it seems that there exists no ‘unique’
choice for the collective coordinate. This means the parameters �0, γ0 are not intrinsic
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properties of the considered integrable model but are rather affected by the definition of the
collective coordinate. It would be of great interest to see whether and in what form the above
‘semiclassical’ connection between the classical dynamics of a collective mode and collective
excitations of the corresponding quantum problem can be extended to a more general class
of non-integrable systems. It is clear that some substantial differences to the integrable case
must arise when the dynamics of the system becomes chaotic.
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